Volume 4 Supplement 1

7th German Conference on Chemoinformatics: 25 CIC-Workshop

Open Access

Non-continuum solvation using the EC-RISM method applied to predict tautomer ratios, pKa and enantiomeric excess of alkylation reactions

  • Jochen Heil1,
  • Roland Frach1 and
  • Stefan M Kast1
Journal of Cheminformatics20124(Suppl 1):O9

https://doi.org/10.1186/1758-2946-4-S1-O9

Published: 1 May 2012

The three-dimensional “reference interaction site model” (3D-RISM) integral equation theory is a statistical-mechanical approach to predict liquid state structural and thermodynamic features. It is based on approximate solute-solvent correlation functions to be computed on a 3D grid as a function of the interaction potential between the solute and the solvent sites, circumventing the need of costly sampling of explicit solvent degrees of freedom. In combination with quantum-chemical calculations within the embedded cluster (EC-)RISM framework [1] the theory allows for studying chemical reactions in solution with an accuracy not reached by traditional continuum solvation methods. In particular, it improves upon dielectric continuum solvation by taking solvent granularity into account and also provides a means towards physically cavity formation and dispersion free Energies without introducing artificial boundaries and empirically fitted radii.

We outline the general framework and show application examples from pKa and tautomeric ratio estimation [2] as well as enantiomeric excess prediction for stereoselective alkylation reactions in organic solvent.

Authors’ Affiliations

(1)
Technische Universität Dortmund

References

  1. Kloss T, Heil J, Kast SM: Quantum Chemistry in Solution by Combining 3D Integral Equation Theory with a Cluster Embedding Approach. J Phys Chem B. 2008, 112: 4337-4343. 10.1021/jp710680m.View ArticleGoogle Scholar
  2. Kast SM, Heil J, Güssregen S, Schmidt KF: Prediction of tautomer ratios by embedded-cluster integral equation theory. J Comput-Aided Mol Des. 2010, 24: 343-353. 10.1007/s10822-010-9340-x.View ArticleGoogle Scholar

Copyright

© Heil et al; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.